Bhartiyam International School

Pre - Mid Term Assessment (2022-23)
Subject: Mathematics
Class: XII
Date: 15/07/2022
Name: \qquad Roll No:
M.M: 40

General Instructions:

1. This question paper contains four sections- A, B, C, and D. Each part is compulsory.
2. Section - A has 6 very short answer type (VSA) questions of 1 marks each.
3. Section - B has 5 short answer type (SA1) questions of 2 marks each.
4. Section - C has 3 short answer type (SA2) questions of 3 marks each
5. Section-D has 3 long answer type questions (LA) of 5 marks each.

Section - A

1. If A is a matrix of order $m \times n$ and B is a matrix such that $A B^{T}$ and $B^{T} A$ are both defined, then find the order of matrix B.
2. Evaluate: $\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)+\cos ^{-1}\left(-\frac{1}{2}\right)+\sin ^{-1}\left(-\frac{1}{2}\right)$.
3. Find the domain of function $y=\sin ^{-1}(4 x)$.
4. Evaluate: Write the principal value of $\tan ^{-1}(1)+2 \sec ^{-1}(2)+\sin ^{-1}\left(-\frac{1}{2}\right)$.
5. Find the value of $\cos ^{-1}\left[\cos \left(\frac{-13 \pi}{6}\right)\right]$.
6. How many reflexive relations in $\mathrm{A} x \mathrm{~A}$ can be formed for a set A if $\mathrm{n}(\mathrm{A})=3$?

Section - B

7. Let R be the relation in the set of integers Z given by $\mathrm{R}=\{(\mathrm{a}, \mathrm{b})$: 2 divides $\mathrm{a}-\mathrm{b}\}$. Show that R is equivalence.
8. If matrix $A=\left[\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right]$ and $\mathrm{A}^{2}=\mathrm{kA}$, then write the value of k.
9. A and B are symmetric matrices of the same order. What type of matrix is $\left(A B^{T}-B^{T}\right)$? 2
10. What are the maximum number of equivalence relations on the set $\mathrm{A}=\{1,2,3\}$.
11. Find the domain of function $y=\sec ^{-1}(2 x-1)$.

Section - C

12. Find the value of x if $\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]\left[\begin{array}{lll}1 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2\end{array}\right]\left[\begin{array}{l}0 \\ 2 \\ x\end{array}\right]=0$.
13. Let $f: \mathrm{N} \rightarrow \mathrm{R}$ be a function define as $f(\mathrm{x})=4 \mathrm{x}^{2}+12 \mathrm{x}+15$. Show that $f: \mathrm{N} \rightarrow \mathrm{S}$, where S is the range of f, is bijective.
14. The bookshop of school A and B has 10 dozen chemistry books, 8 dozen physics books, 10 dozen mathematics books and 8 dozen chemistry books, 10 dozen physics books, 12 dozen mathematics books respectively. Their selling prices are ₹ 80 , ₹ 60 and ₹ 40 each respectively. Find the total amount the bookshop will receive from selling all the books using matrix algebra.

Section - D

15. Express the matrix $B=\left[\begin{array}{rrr}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$ as the sum of a symmetric and a skew symmetric matrix.
16. Let $\mathrm{A}=\{1,2,3, \ldots, 9\}$ and R be the relation in $\mathrm{A} \times \mathrm{A}$ defined by (a, b) $\mathrm{R}(\mathrm{c}, \mathrm{d})$ if $\mathrm{a}+\mathrm{d}=\mathrm{b}+\mathrm{c}$ for $(\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{d})$ in $\mathrm{A} \times \mathrm{A}$. Prove that R is an equivalence relation.
17. Find a matrix X such that $X\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]=\left[\begin{array}{ccc}-7 & -8 & -9 \\ 2 & 4 & 6\end{array}\right]$
